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Exact solutions for the stress distribution inside a spherical inclusion embedded in an other- 
wise homogeneous matrix are obtained. Such expressions provide a framework for discussing 
the load carrying capacity of rubber inclusions and the effect of interracial bonding on the 
toughness of such filled systems. Parametric studies of the influence of constituent stiffness 
ratios on the resultant stress patterns in the inclusion and matrix have been conducted. Results 
indicate that chemical bonding between the particle and matrix is not necessary for soft 
inclusions, but is essential for rigid inclusions. 

1. I n t r o d u c t i o n  
The toughness of many glassy polymers can be 
enhanced by the addition of spherical fillers with 
limited sacrifice in other physical properties of the 
resultant composites. The toughening mechanisms in 
elastomeric filled polymers include rubber tearing [1], 
matrix cold drawing [2] and provision of multiple yield 
sites [3]. Rigid inclusions, such as glass beads, have 
been used to increase the fracture toughness of epoxies 
by a crack-pinning mechanism [4]. 

The role of interfacial bonding in toughening of 
glassy polymers has not been elucidated clearly. Since 
the 1960s the bulk, suspension, and emulsion poly- 
merization processes have become standard methods 
for the manufacture of high-impact polystyrene 
(HIPS), acrylonitrile-butadiene-styrene (ABS) and 
related polymers [5]. These processes consist of graft- 
ing rubber particles to a glassy matrix. In the 1970s 
developments in block copolymerization technology 
offered another route to polymer blends. The block 
copolymer introduced into the interfacial region has 
properties superior to grafted HIPS [6]. A quantitative 
study of the effects of interfacial bonding on rubber- 
toughened nylon 6 has been performed by Wu [7]. He 
has demonstrated that van der Waals' adhesion is 
sufficient for rubber-toughening of composites. In 
1986, Nauman [8] patented a novel compositional 
quenching process to manufacture polymer blends. 
Subsequent studies [9] have shown that the toughness 
of numerous brittle polymers such as styi'ene-acryl- 
onitrile copolymer (SAN), epoxies, polyimides and 
polyphenylene ether have been improved without 
interfacial bonding between the modifier and base 
resins. 

The application of continuum mechanics to par- 
ticulate composites originates from Goodier's stress 
analysis around an elastic inclusion in an otherwise 
uniform matrix [10]. Experimental studies by Wang 
et al. [11, 12] have confirmed the adequacy of Good- 
ier's formulae. Using different craze initiation criteria 
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to analyse the location of craze initiation for both soft 
and hard particle inclusions, Wang et al. concluded 
that locations predicted by the strain energy criteria 
and principle strain criteria agreed best with the test 
data. Extended studies applying Goodier's analysis to 
determine the stress state in a three-phase composite 
containing particles with a core-shell morphology can 
be found in the literature [13, 14]. However, an incor- 
rect application of boundary conditions at the core/ 
shell interface in [13] resulted in an invalid stress distri- 
bution in both core and shell regions. A simplified 
finite-element analysis has been performed by Brout- 
man and Panizza [15] to study the stress interference 
of multiple particles. The results indicated that the 
single-particle model is valid for composites contain- 
ing particles up to 10% by volume. However, most 
studies have concentrated on the stress distribution 
and yield mechanisms in the matrix and a complete 
stress analysis inside the particle has not yet been 
reported. 

The objective of this paper is to investigate the effect 
of interfacial bond strength on the post-yield beha- 
viour of particulate reinforced polymers. Stress func- 
tions have been constructed using spherical harmonic 
functions. The parametric coefficients have been 
determined from boundary conditions at the interface. 
This technique provides a concise description of the 
stress distribution both inside and outside the spheri- 
cal inclusion. 

2. So lut ion  of general  case 
The analysis of the stress distribution inside a spheri- 
cal inclusion has been based on the model shown in 
Fig. 1, which consists of a single particle embedded in 
an otherwise uniform matrix, which is subject to 
remote uniaxial tension. Physical properties, such as 
shear modulus (G) and Poisson's ratio (/0, are dis- 
tinguished by subscript 1 for the matrix and 2 for the 
inclusion. Both materials are assumed to be homo- 
geneous, isotropic and linearly elastic. Further, 
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Figure 1 Elementary model of composites containing spherical 
inclusion. 

perfect adhesion between the particle and the matrix is 
assumed. It will be demonstrated that such assump- 
tions are valid, even for rubbery inclusions in a glassy 
polymer. 

The theoretical basis for the three-dimensional solu- 
tion of this general problem using harmonic functions 
was established by Love [16]. The physical meaning of 
these harmonic functions and general formulae for 
displacement and stress determination can be found in 
Goodier's study [10]. The displacement and stress 
fields for the matrix and the particle in spherical coor- 
dinates have been derived using three independent 
harmonic functions individually for the two materials. 
The selection of the specific spherical harmonic func- 
tions is dictated by the boundary conditions. 

Following Goodier [10], the harmonic functions for 
the matrix are 

2 
~ [ ~  (3cos20 - 1)] (3) 0 )  3 

For the particle: 

~b 2 = 

0 )  2 - 

[fir 2 (3cos20 -- 1)] (4) 

7 - 4# 2 [Dr2 ( 3 c o s 2  0 _ 1)] (5) 
3 

5 - 4#2 
0)0 - [HI (6) 

2(1 - 2 # 2  ) 

The expressions in the square brackets are spherical 
harmonics of degree n (refer to [17] for a general 
discussion). A, B, C, D, F and H are arbitrary con- 
stants which will be determined later. The other con- 
stants multiplying the spherical harmonic functions 
were selected so that the displacement and stress fields 
could be directly compared with Goodier's results. 

The stresses and displacements induced by the 
spherical inclusion can be derived using the well 
known equations (see Appendix). For the matrix: 

A 3B 5 -- 4#, C 
u~r r 2 r 4 + 3(1 - 2#1 ) r 2 

( 9B 5 - 4 # , C )  
+ - 7  + 1 2#, r 2 cos 20 (7) 
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For the inclusion: 

urs = Hr -F Fr + 2#2Dr 3 

+ (3Fr + 6#2Dr3)cos20 (13) 

u ~176 - [3Fr + (7 - 4#2)Dr 3]sin20 (14) 
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+ ( 3 F -  3#2Dr2)cos20] (15) 
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where u is displacement; a rr, 0-00 and 0-~* are radial, 
hoop and meridian stresses; z is shear stress; r is the 
radius from the centre of the inclusion; and the super- 
scripts represent the tensorial notation (Fig. 1). 

It can be shown that these expressions satisfy the fol- 
lowing equations of equilibrium free from body force: 

c~A 1 - 2# 1 
~--~- + 1 - # r s i n O 0 0  (&~sinO) = 0 (19)  

0A 1 - 2# 1 ~? 
00 1 - # sin0 0r (r&~ sin0) = 0 (20) 

where 
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C~ = ~ 00 Or (ru~176 

since u '~ = 0, u rr = urr(r, O) and u ~176 = u~176 0). 



When an elastic solid is subject to uniform ten- 
sion, the displacements and the stresses (in spherical 

coordinates)  at any radius a are: 

u ~r - 4GiTa[ll 4--- #1 4- COS 20 1 ] . / 1  (21) 

Ta 
u I~~ - - -  sin 20 (22) 
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Figure 2 Stress concentrations outside the inclusion of different 
materials. 

where T is the remote uniaxial tension. The six con- 
stants A, B, C, D, F and H can be evaluated from the B _ T 
boundary  conditions. At  the interface (r = a), u rr, u ~176 a 5 
cr rr and r r~ must  be continuous.  The displacements and C 
stresses outside the inclusion are obtained by adding a3 - -  

Equations 7 to 10 to Equat ions  21 to 24, respectively, 
and the displacements and stresses inside the inclusion 

F - 
are taken as Equat ions  13 to 16. Equat ing displace- 
ments and stresses at the c o m m o n  boundary  r = a 
and rearranging the terms with and without  cos 20, 
which varies as 0 changes, six simultaneous equations 
were obtained: 

A 3B 5 - 4#i C Ta 1 - #1 
a 2 a 4 + 3(1 - 2/~1)a 2 + 4G~ 1 + #1 

= Ha + Fa + 2#~Da 3 (25) 
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Note  that  the stress function inside the particle is not  
a function of  radius because D = 0. 

3. St ress  d is t r ibu t ion  and adhes ion  
req u i r e m e n t s  

3.1. Stress distribution 
The stress state a round  the particle affects not  only the 
initiation of  crazing or shear yielding, but  also influ- 
ences the post-yield behaviour  (such as debonding and 

(27) rubber  tearing). Poisson's  ratios and stiffness ratios in 
this study are presented in Table I. These parameters  
resemble glass bead, soft rubber, hard rubber, and 
rubber  with rigid occlusion. All stresses have been 
fiormalized to the applied stress, T. The resultant 

(28) stress distributions a round  the interface are expressed 
graphically for convenience o f  comparison.  

Figure 2 presents typical stress concentra t ion pro- 
files outside the inclusion for different GI/G2 ratios. 
The matrix yields either near the pole for rigid inclu- 

(29) sions or  at the equator  for soft inclusions [11, 12]. 
Figure 3 shows a typical stress distribution inside the 
rigid inclusion. Note  that  the radial and shear hoop  
stresses are symmetrical  and have a maximum value o f  

(30) approximately  1.9 at 0 = 0 and 0 = ~z/2, respectively. 
The principal stress distributions are shown in Fig. 4. 

The six constants  then can be evaluated analytically 
using a Macsyma  symbolic manipula t ion p rogram 
performed on a S U N  Works ta t ion  3/60: 

A T 

a 3 6 G  l (l  -}- #1 ) 

G~(1 -- 2#2)(I + ]Xl) - -  G2(1 -- 2#1)(1 + /~2) X 
2Gt(1 - 2#2) + G2(1 + #2) 

(31) 

T A B L E  I P a r a m e t e r s  o f  m a t e r i a l  p rope r t i e s  

P o i s s o n ' s  r a t i o  Stiffness r a t io  (G1/G2) 

Matrix 0.33 
Rigid inclusion 0.28 0.01 
Soft inclusion (1) 0.48 I000 
Soft inclusion (2) 0.48 100 
Soft inclusion (3) 0.48 10 
Soft inclusion (4) 0.48 1 
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Figure 3 Stress distribution inside rigid inclusion. 

The stress distributions inside the soft inclusion are 
presented in Figs 5a -d  for inclusion is under hydro- 
static tension, with small deviations between the 
radial, hoop and meridian stress. Also, the shear stress 
is very small. Therefore, the assumption of  elastic 
properties for the soft inclusion is preserved. As the 
stiffness ratio decreases, the stress difference between 
radial, hoop and meridian stress increases. The stress 
level is also seen to increase. 

3.2. Adhesion and inclusion failure analysis 
Adhesive failure includes debonding and molecular 
pullout from the matrix. The debonding failure is 
presumed active when the continuous stress at the 
interface (a~ or z~0) exceeds the bond strength of the 
material [13]. However, rubber particles are known to 
withstand high hydrostatic tensile and compressive 
stresses. To account for this, failure should be pre- 
sumed to occur when molecular pullout takes place in 
conjunction with either the Tresica or von Mises 
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Figure 4 Principal stresses of rigid inclusion. 

0 "  2 = 

and 

critei'ia. The Tresica criterion is: 

2rm.~ = max[ol, a2, 03] - rain[o-l, a2, 03] (37) 

and the von Mises criterion, which is equivalent to 
constant distortional strain energy [18], is: 

...Coct = 1 j ( O -  1 _ _  0 - 2 ) 2  Jf_ ( 0 - 2  - -  0 - 3 )  2 -~-  ( 0 - 3  - -  0 - 1 )  2 

(38) 

where %~• and Zoc~ are material constants, the critical 
shear stress and yield stress respectively. 0-1, 0-2 and 0-3 
are principal stresses, which may be written as: 

{9"1 = 1 ( 0 - r r  - J r -  0 0 0 )  J r -  1 J ( 0 - r r  - -  0 . 0 0 ) 2  _ } _  4(l.r0)2 

(39) 

{ ( 0 - r r  _ { _  0-00) - -  1 2 ~  / \ ~ / ( r r r r  _ _  0 - 0 0 ) 2  + 4(z~o)2 

(40) 

o3 = o ~'~ (41) 
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Figure 5 Stress distributions inside different inclusions. GI/G 2 = (a) I000; (b) 100: (c) I0; (d) I. 
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Figure 6 shows that rm=~ and roo~ decay rapidly as 
stiffness ratio increases. The bond strength of C-C 
bonds and the weakest van der Waals force (London 
force) are 370kJmol  -~ and 5 k J m o l  ~, respectively 
[19]. The yield strength of the matrix is less than the 
C - C  bond strength. Therefore the low shear stress 
state in the soft inclusion, approximately one 
thousandth the applied stress for Gt/G2 = 1000, 
ensures the integrity of  rubber and matrix even as the 
crack propagates. This phenomenon has been observed 
in a rubber-toughened nylon system [7], in which the 
matrix yields extensively and no debonding or rubber 
tearing occurs. At the other extreme, interfacial bond- 
ing is essential for glass-bead toughened epoxies 
[20, 21] and polyesters [22] due to the high stress state 
across the interfacial region. The adhesion require- 
ment for rubber particles containing matrix occlusions 
lies between these two cases. 

4. Conclusions 
A set of  equations with concise constants has been 
obtained to calculate the stress distribution within the 
spherical inclusion and in the otherwise uniform 
matrix. The need for strong interfacial bonding 
depends on the stiffness ratio of  the constituents. 
Stress calculations inside the soft inclusion reveal that 
van der Waals adhesion can be sufficient to relieve the 
high localized stresses in the matrix. Therefore the soft 
inclusion acts as yield initiator as well as crack 
arrestor. However, the adhesion between particle and 
matrix becomes more important  as the stiffness of  the 
inclusion increases. The rigidity also constrains the 
post-yield behaviour of  the matrix. Even though 
thermally induced residual stresses were not con- 
sidered in this study, the analysis should be valid for 
composites made by continuous solvent removing 
processes such as solvent casting and compositional 
quenching processes. The effect of  particle size on 
the yield behaviour is not considered in this study. 
Finally, it is noted with emphasis that such investi- 
gations are crucial for a proper understanding of 
toughening mechanisms in composites. 

Appendix 
The displacement and stress fields from spherical 
harmonic functions, ~bo and co=, can be expressed as 

follows: 

u r  r m 
- - -  + r-~- r + ~ n r O O .  (AI) 

d~ 0 1 ~4'~ 0% 
- -  + r - - -  

r c~0 c~0 

The general formulae for the strain are: 

~L/rr 
err __ 

oqr 

1 (~U 00 b/rr 
e00 _ + - -  

r 00 r 

e q~ = A --  e rr - -  e 00 

er~ +r~rO(U~ 

The general stress-strain relationships are: 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

. e00 1 o e~ C '~ 2G 1 - 2/~ o , , = A + (e rr, e *'~) 

(A7) 
r r~ = Gd ~ (A8) 

where A is the dilation which is equal to 
[2n + (3 + n)gn](On, and the constant ~= is 

- 2  
3n + 1 - 2(2n + 1)# 

n + 5 - 4 #  
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